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With the ultimate goal of devising effective absorbing boundary conditions (ABCs) for gen-
eral anisotropic media, we investigate the well-posedness and accuracy aspects of local
ABCs designed for the transient modeling of the scalar anisotropic wave equation. The
ABC analyzed in this paper is the perfectly matched discrete layers (PMDL), a simple var-
iant of perfectly matched layers (PML) that is also equivalent to rational approximation
based ABCs. Specifically, we derive the necessary and sufficient condition for the well-
posedness of the initial boundary value problem (IBVP) obtained by coupling an interior
and a PMDL ABC. The derivation of the reflection coefficient presented in a companion
paper (S. Savadatti, M.N. Guddati, J. Comput. Phys., 2010, doi:10.1016/j.jcp.2010.05.018)
has shown that PMDL can correctly identify and accurately absorb outgoing waves with
opposing signs of group and phase velocities provided the PMDL layer lengths satisfy a cer-
tain bound. Utilizing the well-posedness theory developed by Kreiss for general hyperbolic
IBVPs, and the well-posedness conditions for ABCs derived by Trefethen and Halpern for
isotropic acoustics, we show that this bound on layer lengths also ensures well-posedness.
The time discretized form of PMDL is also shown to be theoretically stable and some insta-
bility related to finite precision arithmetic is discussed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Many wave propagation problems defined on physically unbounded domains can be divided into two regions; the interior
and the exterior, with the interface between them termed the computational boundary. The interior is a small bounded re-
gion where the solution to the governing equations is sought while the exterior is the rest of the unbounded domain whose
effect on the interior is required only at the computational boundary. The computational boundary is a boundary introduced
solely for computational purposes and should be distinguished from physical boundaries. Since the solution to the governing
equations is not required in the exterior, the computational domain can be restricted to just the interior by specifying appro-
priate absorbing boundary conditions (ABCs) at the computational boundary.

ABCs are thus used to replace a ‘physical’ model by an equivalent ‘computational’ model. The physical model consists of
the interior and exterior governing equations, along with initial conditions (ICs) and physical boundary conditions (BCs) de-
fined on the physical domain (interior + exterior). The computational model consists of the interior governing equations, ICs,
physical BCs and ABCs defined on the computational domain (interior + computational boundary). Both these systems are
initial boundary value problems (IBVPs) and will henceforth be referred to as ‘physical IBVP’ and ‘computational IBVP’,
respectively. ABCs can thus be viewed as additional constraints on the physical IBVP that limit (or expand) the space of exist-
. All rights reserved.
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ing solutions. If the constraints are too restrictive, all valid solutions of the physical IBVP might be excluded rendering the
computational IBVP unsolvable. If they are too lax, spurious, unphysical solutions might be admitted rendering the compu-
tational IBVP inaccurate. Hence, it is essential to ensure that the ABCs used are ‘appropriate’; appropriateness here being
determined through the criteria of well-posedness and accuracy. Roughly speaking, well-posedness refers to the existence
of a unique solution that is bounded in some way by the initial and boundary data of the computational IBVP, while accuracy
refers to the close resemblance of this unique solution to the exact solution. In addition to these two, a third criterion,
namely that of computational efficiency, is many a times required by large scale simulations [1,2].

Exact ABCs are well-posed and accurate by default, but their availability is restricted to simple exteriors with regular
computational boundaries. Approximate ABCs provide acceptable accuracy and are available for more complicated problems,
but their well-posedness is not guaranteed. For large scale simulations, however, exact ABCs are prohibitively expensive; this
necessitates the use of approximate ABCs. Even amongst approximate ABCs, those containing nonlocal spatial and temporal
operators (global ABCs) are unsuitable for large scale problems and hence local ABCs are preferred [1,2]. The most popular
local ABCs currently available are rational ABCs and perfectly matched layers (PMLs) [3]. Rational ABCs approximate the ex-
act stiffness of an exterior (or associated dispersion relation) with rational functions of varying orders; Lindman [4], Engquist
and Majda [5,6], Bayliss and Turkel [7] and Higdon [8] were their early developers followed by many others [2]. Initial
numerical implementations of rational ABCs were restricted to low orders but later auxiliary variable formulations provided
practical high order rational ABCs [9]. The other popular local ABC, the PML, is a ‘special’ absorbing medium that uses com-
plex coordinate stretching to dampen out (or decay) propagating waves without creating artificial reflections at the compu-
tational boundary. First introduced by Bérenger [11] and closely followed by the complex coordinate stretching viewpoint
provided by Chew et al. [12–14], PMLs are now available in split and unsplit forms with variations like the conformal
PML [15], complex frequency shifted PML (CFS-PML) [16], convolutional PML (CPML) [17] and multiaxial PML (M-PML)
[18]. Currently, both rational ABCs and PMLs are available for a wide variety of governing equations that include, among
many others, Maxwell’s, linearized Euler’s and elastodynamic equations.

Rational ABCs tend to be more accurate than PML because the effect of the rational ABC parameters on solution accuracy
is better understood (and hence more easily handled). On the other hand, ABCs based on PML have proven to be more ver-
satile by being easily extendible to complicated exteriors [3]. The term complicated here implies material complications like
heterogeneities and/or anisotropy and geometrical complications like corners and conformal boundaries. While both local
ABCs satisfy the criteria of accuracy and efficiency, neither of them is assured to be well-posed per se. The development
of both these ABCs is fraught with examples of seemingly reasonable formulations that have been found to lack well-posed-
ness in one sense or another e.g. see [19,20]. In fact, proving well-posedness (or stability) of newly formulated ABCs is now de
rigueur e.g. see [5,6,8,21–33]. Studies focusing solely on well-posedness issues have been rare with some accessible papers
being by Higdon [34], Trefethen et al. [35], Bécache et al. [26] and Appelö et al. [36]. The references within these papers can
be used to get a more comprehensive review of previous works. While the mathematical well-posedness theories are well
developed today and most of their physical implications have been understood [34], their application to specific governing
equations is not always straightforward; especially for complicated media.

One of the challenges to devising well-posed local ABCs for complicated (anisotropic and/or inhomogeneous) media
comes from the well-posedness criterion imposed on propagating waves. Well-posedness requires that an ABC should not
admit propagating modes travelling into the interior (incoming modes) in the absence of outgoing modes and sources on
the boundary [34]. This makes physical sense in as much as an ABC should not allow spontaneous emission of energy into
the interior without interior or boundary excitation [35]. While propagating waves are distinguished into incoming and out-
going waves depending on their group velocity, rational ABCs and PML have both been traditionally formulated to absorb
waves depending on their phase velocities. This dependence on phase velocities (instead of group velocities) does not affect
simple media where the phase and group velocities are always of the same sign (e.g. homogeneous isotropic media) and
hence ABC formulations for simple media have turned out to be well-posed. In fact, it has been shown that a condition nec-
essary for stability of PML (a concept related to well-posedness in the sense of providing bounds for solutions) is the absence
of wave modes with phase and group velocities of differing signs [26]. Recognizing the fact that many anisotropic and/or
inhomogeneous media admit such wave modes, much recent research has been focused on developing techniques that result
in well-posed (or stable) local ABCs for such media. A scalar anisotropic medium whose principal material axis is tilted with
respect to the coordinate axis is a simple example of a medium that allows wave modes with differing phase and group
velocity signs (see Sections 2.2 and 2.3). A similar challenge, arising from the existence of wave modes with inconsistent
phase and group velocity signs, has already been recognized in the cases of anisotropic electromagnetism, advective acous-
tics and anisotropic elastodynamics, e.g. [24–33]. Most of these studies approach the well-posedness issues from a PML
viewpoint and, for the particular case of advective acoustics, all of them specify linear space–time transformations that nul-
lify the inconsistencies in phase and group velocity signs. Moreover, many of these studies model the problem as an initial
value problem (IVP) and deal with the continuous form of the ABC prior to discretization. However, actual implementations
of these ABCs are discretized IBVPs and it is not entirely clear how their behavior can be inferred from the continuous IVP
results.

In this paper, we consider well-posedness from a rational ABC point of view and hence deal with IBVPs. Moreover, the ABC
chosen for this purpose is the perfectly matched discrete layer (PMDL) [37–39] that is inherently discrete. We provide a nec-
essary and sufficient criterion for well-posedness of PMDL, when it is used as an ABC for the scalar anisotropic wave equa-
tion. In fact, this criterion is also sufficient for accuracy and is the same as the accuracy condition developed for the time
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harmonic case in [40]. In essence, we prove that the parameters of PMDL (its layer lengths), need to satisfy a simple bound to
exclude all ill-posed (and none of the well-posed) IBVPs resulting from the use of PMDL BCs while accurately modeling an
unbounded domain governed by the scalar anisotropic wave equation. Also, we deal with strong well-posedness; even
though weak well-posedness is generally sufficient for constant coefficient problems, more realistic varying coefficient prob-
lems can be well-posed only when their ‘frozen’ coefficient counterparts are strongly well-posed. It is hence necessary to
ensure the strong well-posedness of constant coefficient problems and we do this by utilizing the well-known well-posed-
ness theory of Kreiss [41,42]. The well-posedness criterion derived here, solely from the viewpoint of rational ABCs, bears
similarity to the ones derived through coordinate transformations of PML and other ABCs in [21–33] even though the ra-
tional ABC we use for this purpose does not require any coordinate transformation to be enforced. This similarity is not
too surprising because of the link shown to exist between rational ABCs and PML by Asvadurov et al. [43]. This link can
be used to view PMDL as particularly efficient versions of PML where the perfectly matching property is preserved even after
discretization making the analysis presented here meaningful to other rational ABCs and PML in general. Moreover, the ab-
sence of any coordinate transformations makes the PMDL ABC more amenable to extensions involving layered media. The
details of the PMDL formulation can be found in [44] and are summarized in Section 2.4.

In this paper we deal with well-posedness and accuracy issues of a continuous interior (but discretized exterior) with a
straight computational boundary. Moreover, accuracy considerations here are limited to propagating waves only. As such,
interior discretization errors, corners, curved computational boundaries, loss in accuracy due to neglecting the treatment
of evanescent waves and treatment of numerical instabilities related to finite precision arithmetic are outside the scope
of this paper. It should be noted that the above restrictions are imposed to make the problem more tractable; they are
not, with the exception of curved boundaries, due to any limitations of the PMDL formulation. Numerically stable PMDLs,
capable of handling both propagating and evanescent waves for scalar isotropic media have already been implemented
on domains with convex polygonal corners in [37–39]. As such, this paper can be considered as the necessary first step to-
wards a complete PMDL implementation for anisotropic media.

The outline of the rest of the paper is as follows. Preliminaries related to scalar anisotropic wave equation are presented in
Section 2 followed by a discussion of the challenges inherent in designing well-posed and accurate ABCs for such equations.
A brief review of the formulation of PMDL is also presented in the same section. Section 3, which is necessary to understand-
ing the results of this paper, contains a summary of the PMDL approximation properties derived in [40] and states the con-
dition sufficient for accuracy of PMDL. Section 4 contains a statement of the well-posedness criterion and the derivation of a
condition that is both necessary and sufficient for well-posedness of PMDL. Numerical stability issues are presented in Sec-
tion 5 with numerical experiments presented in Section 6. Section 7 contains a summary and conclusions.

2. Preliminaries

2.1. Model problem

The ultimate aim of this paper is to provide a practical ABC for the scalar anisotropic wave equation. To this end, we
choose the simplest possible boundary in two dimensions: a straight edge without corners. Fig. 1 (left) shows such a bound-
ary (x = 0) and the model problem shown therein consists of replacing the exact full-space by a left half-space (interior) along
with an ABC that simulates the effect of the right half-space (exterior). The interior and exterior in Fig. 1 (left) are given by
x < 0 and x > 0 respectively.

2.2. Scalar anisotropic media

We consider the scalar wave equation in two dimensions (x � y) given by,
Fig. 1.
anisotr
(xM,yM)
Left: the model problem consists of replacing a full space by a left half-space and an efficient ABC that is both accurate and well-posed for a scalar
opic medium. Right: global coordinate and material axes along with a typical slowness diagram for ðrx;ryÞ 2 R. Note that the principal material axes
are shown on the ellipse just for reference.
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@t2 ¼ 0; ð1Þ
where the three independent parameters A, B, C define the material properties of the medium and can be easily obtained by
coordinate stretching and rotation of the isotropic wave equation. Eq. (1), e.g. arises in the study of anti-plane shear waves in
transversely isotropic elastic media, where the parameters A, B, C are functions of shear moduli, density and orientation of
principal material axes of the medium. Similar scalar equations arise in the study of electromagnetism and advective acous-
tics. Fourier transforming (1) in y, t with the dualities @/@y M iky, @/@t M �ix, results in a dispersion relation in terms of hor-
izontal slowness (rx = kx/x) and vertical slowness (ry = ky/x),
�Ar2
x � Br2

y � Crxry þ 1 ¼ 0: ð2Þ
For ðrx;ryÞ 2 R, (2) represents an ellipse in the slowness space defined by its semiminor axis (a), semimajor axis (b) and an-
gle of tilt (b) with respect to the x � y axis as shown in Fig. 1 (right). The parameters a, b represent the material properties
along xM � yM; e.g. if the medium has shear moduli lxM

; lyM
and density q, we have 1=a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lxM

=q
q

and 1=b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lyM

=q
q

rep-
resenting the wave velocities along xM � yM. Simple coordinate transformations yield:
A ¼ cos b
a

� �2

þ sin b
b

� �2

; B ¼ cos b
b

� �2

þ sin b
a

� �2

; C ¼ sin 2b
1
a2 �

1

b2

� �
: ð3Þ
For later reference, we need the traction on the computational boundary (x = 0). The traction components in xM � yM direc-
tions are (a�2)@/@xM, (b�2)@/@yM. These can be transformed through the usual second order tensor transformations to get into
the traction components in x � y:
Tx : A
@u
@x
þ ðC=2Þ @u

@y
; Ty : B

@u
@y
þ ðC=2Þ @u

@x
: ð4Þ
Precisely, Tx, Ty are the traction components on surfaces perpendicular to x, y axis. Without loss of generality, we consider
b P a > 0, b 2 [�p/2,p/2) and this results in,
A > 0; B > 0; 4AB� C2 > 0: ð5Þ
Variations of the three material properties A, B, C result in three kinds of slowness diagrams representing isotropic, untilted
anisotropic and tilted anisotropic media as shown in Fig. 2. Note that henceforth rx will be represented on the vertical axis
(as in Fig. 2).

For a given ry 2 R, (2) allows both propagating ðrx 2 RÞ and evanescent modes rx R Rð Þ where each propagating wave
mode is associated with a phase velocity (cpx) and a group velocity (cgx) in the x-direction defined by:
cpx ¼
x
kx
¼ 1

rx
;

cgx ¼
@x
@kx
¼ Akx þ Cky=2

x
¼ Arx þ

Cry

2
:

ð6Þ
Representative slowness diagrams for the three kinds of media governed by a scalar wave equation. Only slowness diagram for propagating waves is
i.e. ðrx;ryÞ 2 R. Note that the principal material axes (xM, yM) are shown on the ellipse just for reference.
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It is known that while cpx represents the apparent velocity of propagation, cgx represents the true velocity of energy propa-
gation in the x-direction. For the rest of the paper, the terms ‘phase velocity’ and ‘group velocity’ will refer to cpx and cgx,
respectively with the understanding that these velocities are always in the x-direction.

2.3. ABCs: exact and approximate

For a given ry 2 R, the propagating modes rx 2 Rð Þ allowed by the quadratic Eq. (2) can be classified in terms of cgx as
rightward and leftward propagating waves; their horizontal slownesses are given by,
rx ¼
�Cry þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

: cgx P 0 ðrightward propagatingÞ; ð7Þ

rx ¼
�Cry �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

: cgx 6 0 ðleftward propagatingÞ: ð8Þ
Graphically, the propagating wave modes of (2) are represented by the ellipse in Fig. 3, where the rightward and leftward
propagating waves of (7) and (8) are denoted by the solid and broken lines, respectively of the left ellipse in Fig. 3. An exact
right half-space, in the absence of any sources within it, admits waves that either propagate to the right (cgx P 0) or decay
with increasing x (Im (rx) > 0). The equation of an ABC that exactly simulates a right half-space is thus given by,
rx ¼
�Cry þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

: exact ABC ðslowness formÞ; ð9Þ
where the square root is defined by the standard branch cut and ðry;xÞ 2 R. The slowness diagram of an exact ABC for prop-
agating waves ðrx 2 RÞ will thus be the solid portion of the left ellipse in Fig. 3.

Most approximate ABCs like traditional rational ABCs and PML are based on capturing positive phase velocities (and not group
velocities) and hence cannot result in accurate ABCs when the signs of both these velocities are different i.e. when cgxcpx < 0. Since
there exist wavemodes with opposing signs of phase and group velocities in the case of scalar waves in tilted anisotropic media
(see Fig. 3), implementations of ABCs with an arbitrary choice of parameters will, in general, allow modes with negative group
velocities. Capturing the negative group velocity branch does not just lead to inaccuracies. One of the criteria necessary for the
well-posedness of an ABC is that the ABC should not admit leftward propagating wave modes i.e. those with non-positive group
velocities [34]. Hence, a typical approximate ABC, in conjunction with a left half-space (as in Fig. 1) actually results in an ill-posed
problem – not just an inaccurate one. Designing well-posed approximate ABCs for interiors allowing modes with phase and group
velocities of differing signs is a challenge that has attracted much current research, e.g. [23–30,32,33].

PMDL is a local ABC based on arbitrarily wide angle wave equations (AWWEs) [44] that can be considered to be a par-
ticularly efficient discretization of PML and has no discretization error [37]. PMDL forms the basis of this study because of
its many attractive properties enumerated in [40]. Notwithstanding these merits however, well-posedness of PMDL is not
assured, especially for general anisotropic and heterogeneous exteriors. The original PMDL formulation was shown to exhibit
characteristics that might lead to ill-posedness and instabilities in complicated media [44]. In fact, this paper is a first step
towards tackling the issue of ill-posedness due to anisotropy with the purpose of obtaining a well-posed PMDL for scalar
waves in tilted anisotropic media.

2.4. PMDL: formulation

The model problem in Fig. 1 involves replacing the right half-space (0 6 x <1) by an ABC. If the right half-space stiffness
(or Dirichlet to Neumann map) is given by Kexact, the traction F0 on the left boundary (x = 0) and the field variable there (u0),
are related by:
Fig. 3. A typical slowness diagram for tilted anisotropic media with the regions of positive group and phase velocities clearly demarcated.
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F0 ¼ Kexactu0 : exact ABC ðstiffness formÞ: ð10Þ
Eq. (10) can be viewed as the stiffness form of the equation of an exact ABC as compared to the slowness form of (9). Substi-
tuting a mode u ¼ eixðrxxþryy�tÞ in (4), comparing it with (10), and using (9) we get,
Kexact ¼ �ix Arx þ
C
2
ry

� �
¼
�ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2

: ð11Þ
The PMDL model replaces the exterior right half-space with n (<1) mid-point integrated finite element layers of lengths
L1, . . .,Ln with a Dirichlet boundary at the end (see [40]). Using ~u1; . . . ~un�1; ~un to denote the values of the field variable at
the right edge of each layer, the Dirichlet condition becomes ~un ¼ 0. If ~u0 is the displacement at the left edge of the n-layer
PMDL model, the assembled finite element matrix takes the form,
F0

0
0
..
.

0
0

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
¼

S11
1 S12

1

S21
1 S22

1 þ S11
2 S12

2

S21
2 S22

2 þ S11
3 S12

3

. .
. . .

. . .
.

S21
n�2 S22

n�2 þ S11
n�1 S12

n�1

S21
n�1 S22

n�1 þ S11
n

266666666664

377777777775

~u0

~u1

~u2

..

.

~un�2

~un�1

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
; ð12Þ
where the element stiffness matrix for each of the n midpoint integrated layers is,
Sj ¼
S11

j S12
j

S21
j S22

j

" #
¼ A

Lj

1 �1
�1 1

� �
þ iCxry

2
0 �1
1 0

� �
þ

Ljx2ðBr2
y � 1Þ

4
1 1
1 1

� �
; j ¼ 1; . . . ; n: ð13Þ
A choice of frequency dependent purely imaginary layer lengths of Lj = 2i/xrxj will make the n-layer PMDL exact for a choice
of slownesses rx = rxj and these rxj are termed the n parameters of PMDL. With this, (13) becomes
Sj ¼
S11

j S12
j

S21
j S22

j

" #
¼ �ixrxjA

2
1 �1
�1 1

� �
þ iCxry

2
0 �1
1 0

� �
þ

ixðBr2
y � 1Þ

2rxj

1 1
1 1

� �
for ðj ¼ 1; . . . ; nÞ: ð14Þ
In order to simplify later calculations (14) is written as
Sj ¼ �ixCj þ Kj þ ði=xÞRj; ð15Þ
where,
Cj ¼
rxjA

2
1 �1
�1 1

� �
þ 1

2rxj

1 1
1 1

� �
; Kj ¼

iCky

2
0 �1
1 0

� �
; Rj ¼

Bk2
y

2rxj

1 1
1 1

� �
: ð16Þ
Assembling the finite element matrices Sj and using (16), we can write (12) as,
F ¼ �ixCþ Kþ ði=xÞR½ �~u; ð17Þ
where C, K, R are finite element assemblies of element contributions Cj, Kj, Rj and u ¼ ½~u0; . . . ; ~un�1�T , F = [F0 0. . . 0]T. By elim-
inating the variables ~u1; . . . ; ~un�1 from (12) we get the form,
F0 ¼ Kn~u0 : approx ABC ðstiffness formÞ: ð18Þ
In essence, the n-layer PMDL model approximates only the stiffness Kexact and hence the displacement u0 (both at x = 0) and
not the displacement inside the half-space u(x > 0). Hence we have ~u0 � u0 but ~u1; . . . ; ~un�1 are just ‘auxiliary’ variables that
have no physical interpretation. Comparing (18) to (10) we see that PMDL approximates the exact stiffness (Kn � Kexact) and
the properties of this approximation are dictated solely by the choice of the n arbitrary parameters rxj. A detailed derivation
of the formulation is presented in [44] with a summary in [40]. Kn is obtained by eliminating the auxiliary variables from (17)
and has a rational function/continued fraction form,
Kn ¼ �ixP2n;2n�2ðryÞ ¼ S11
1 �

S12
1 S21

1

S22
1 þ S11

2 �
S12

2 S21
2

S22
2 þ S11

3 �
. .

.

S12
n�1S21

n�1

S22
n�1þS11

n

:

ð19Þ
In (19), ry = ky/x and P2n,2n�2(ry) is a real rational function in ry of exact degrees 2n and 2n � 2 with n P 1. Comparing (19)
to (11) and noting that Kn � Kexact, the rational approximation basis of PMDL becomes evident as,
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P2n;2n�2ðryÞ �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2

; ð20Þ
and by using (20) in (9), the slowness form of PMDL becomes,
rx ¼
�Cry=2þ P2n;2n�2ðryÞ

A
: approx ABC ðslowness formÞ: ð21Þ
Eqs. (17) and (19) also lead to,
Kn ¼ �ixCþ Kþ ði=xÞRj j: ð22Þ
2.5. PMDL: approximation properties

This work is limited to propagating wave modes only i.e. we are interested in properties of ABCs that only approximate
the real part of (9). Even though neglecting evanescent modes ðrx R RÞ is expected to affect the long term accuracy of the
solution in the interior [10,46], and even though PMDL can handle evanescent wave modes [44,45], we consider this paper
to be a preliminary work on rational ABCs for tilted anisotropic media and so restrict ourselves to propagating wave modes.
The approximation properties of PMDL for propagating modes are best understood through the reflection coefficient that
was derived in [40] and shown to have the two forms,
Rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
=2� P2n;2n�2ðryÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4A� ð4AB� C2Þr2
y

q
=2þ P2n;2n�2ðryÞ

0B@
1CA : Reflection coefficientðslowness formÞ; ð23Þ

jRnj ¼
Yn

j¼1

cgx � cj

cgx þ cj

� �
cgx � �cj

cgx þ �cj

� ������
����� ðcgx P 0Þ : Reflection coefficientðgroup velocity formÞ; ð24Þ
where P2n,2n�2(ry) is the rational function encountered in (19), and cj; �cj are the reference group velocities given by,
cj ¼ Arxj þ ðC=2Þ
�Crxj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

0@ 1A;
�cj ¼ Arxj þ ðC=2Þ

�Crxj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

0@ 1A:
ð25Þ
cgx in (24) is the group velocity of the incident wave mode that is propagating rightward and hence cgx P 0. Defining the ver-
tical slownesses,
ryj ¼
�Crxj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

;

�ryj ¼
�Crxj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B� ð4AB� C2Þr2

xj

q
2B

;

ð26Þ
for every rxj (i.e. every layer of length Lj = 2i/x rxj), the PMDL slowness interpolates the exact slowness (2) at the four points
given by ðryj;rxjÞ; ð�ryj;rxj þ ðC=AÞryjÞ; ð�ryj;rxjÞ and ð��ryj;rxj þ ðC=AÞ�ryjÞ. It should be noted that these four points of inter-
polation need not necessarily be distinct, but for every choice of rxj, there are four points of interpolation counted with mul-
tiplicity. A n-layer PMDL has n parameters (rxj with j = 1 . . . n) and hence it has 4n points of interpolation in all counted with
multiplicity. Detailed discussion can be found in [40].
3. Accuracy

A n-layer PMDL is considered convergent (or accurate, following the terminology in the ABC literature) if, by increasing
the number of layers n, the magnitude of its reflection coefficient can be made arbitrarily small for every strictly rightward
propagating wave mode, i.e.
lim
n!1
jRnðcgxÞj ¼ 0 8 cgx > 0 : accuracy criterion: ð27Þ
The reason for the criterion (27) to be ‘accurate enough’ while excluding the zero group velocity mode (cgx = 0) is stated in
[40] and essentially reduces to the fact that a PMDL ABC that allows cgx = 0 to exist in the interior ends up being ill-posed
[34].
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This incompatibility between being well-posed and being able to represent zero group velocity modes accurately is not
unique to PMDL. A similar situation occurs between accuracy and stability of difference approximations in [47]. In fact, for
the case of untilted anisotropy, limn?1jRn(0)j = 0 cannot be satisfied by any existing local ABC. The calculations in [40] show
that a sufficient condition for (27) to be satisfied is,
Fig. 4.
defines
rxj >
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Að4AB� C2Þ
q
�������

������� ð28Þ
The above condition (28) has a simple geometric interpretation that is shown in Fig. 4.
The n-layer PMDL approximates the stiffness (11) by a rational function instead of approximating the horizontal slowness

directly. It can be seen from (11) and (6) that the stiffness for propagating wave modes is in fact related to their group veloc-
ity as K = �ix cgx and hence approximating stiffness is the same as approximating group velocities. This is the reason why the
PMDL reflection coefficient (24) is expressible purely in terms of group velocities and as noted in [40], the form of (24) is key
to the derivation of the simple accuracy condition (28).

4. Well-posedness

4.1. Well-posedness of an ABC

Kreiss gave necessary and sufficient algebraic conditions for well-posedness of systems of linear hyperbolic initial bound-
ary value problems (IBVPs) defined on a half-space [41] by specifying energy estimates depending on initial and boundary
data that need to be satisfied. Well-posedness in Kreiss’s sense reduces to avoiding certain ill-posed normal modes of the
form eikxxþikyy�ixt where ky 2 R but where kx and x are allowed to be complex. In general, these ill-posed modes are solutions
to the computational IBVP that are L2 integrable in x 6 0 but fail to satisfy the specified energy estimate [34]. Trefethen and
Higdon have both provided useful physical interpretation of Kreiss’s ill-posed normal modes in the context of ABCs for wave
propagation problems [34,48]. In the case of the model problem containing an interior left half-space with an ABC at x = 0, ill-
posed normal modes are solutions to (1) of the form eikxxþikyy�ixt with ky 2 R and with the (kx, x) pair satisfying any one of the
following three criteria:
ImðxÞ > 0; ImðkxÞ < 0 ðmodes growing exponentially in time while decaying into the interiorÞ
ImðxÞ ¼ 0; ImðkxÞ ¼ 0; cgx 6 0 ðleftward propagating modesÞ
ImðxÞ ¼ 0; ImðkxÞ < 0 ðevanescent modes decaying into the interiorÞ:
The first of these modes is L2 integrable in x 6 0 but grows exponentially in time. The second mode contains propagating
waves that propagate energy into the interior (cgx < 0) without any interior or boundary excitation. This again leads to un-
bounded growth in time though at a much slower rate. Physically, it is not immediately apparent why propagating waves
moving tangential to the boundary (the case of cgx = 0 for the second ill-posed mode) and evanescent modes decaying into
the interior (third ill-posed mode) should result in ill-posedness. Mathematically, however, the second and third modes are
limiting cases of the first mode that is clearly ill-posed. A more detailed discussion of these ill-posed modes can be found in
[34]. If any of the above three modes is allowed by the interior governing equation in conjunction with the ABC, then the
Left: geometric interpretation of the sufficient condition for accuracy. The parameters of PMDL should be chosen above the horizontal line that
the ’cusp’ of the ellipse. Right: corner PMDL with parameters (layer lengths) consistent with the two edge PMDLs.
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model in Fig. 1 containing a left-half space with an ABC on its boundary is ill-posed. Additionally, the exclusion of these ill-
posed modes is known to be sufficient for ensuring well-posedness [34,35].
4.2. Well-posedness criterion

Trefethen and Halpern [35] provided well-posedness criterion for rational ABCs for isotropic acoustics (A = B = 1, C = 0 in
(1)). In this sub-section we extend this criterion to tilted anisotropic acoustics, and state it in relation to a n-layer PMDL. In
order to facilitate understanding and comparison, we reproduce the order and flow of [35] even if it leads to the restatement
of a few equations.

The exact dispersion relation of (1) is:
�Ak2
x � Bk2

y � Ckxky þx2 ¼ 0: ð29Þ
Eq. (29) admits two solutions for kx given by,
kx ¼
�Cky þx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þðk2

y=x2Þ
q

2A
; ð30Þ

kx ¼
�Cky �x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þðk2

y=x2Þ
q

2A
: ð31Þ
For ðkx; ky;xÞ 2 R, (30) represents rightward propagating waves (cgx P 0) and (31) represents leftward propagating waves
(cgx 6 0). The distinction of tangential waves (cgx = 0) is ignored for now; it will become necessary only later. The ABC in
Fig. 1 should admit rightward propagating waves (cgx P 0), and so it approximates (30) with a rational function given by
(from (21)),
kx ¼
�Cky=2þxP2n;2n�2

A
: approx ABC ðn-layer PMDLÞ; ð32Þ
where ry = ky/x and P2n;2n�2 ¼ p2nðryÞ=q2n�2ðryÞ. Here, p2n(ry) and q2n�2(ry) are polynomials of exact degrees 2n and 2n � 2,
respectively with n P 1 and with no common zeros. Multiplying (32) by Ax2n�1q2n�2(ry) and rearranging we get:
Qðkx; ky;xÞ ¼ 0; ð33Þ
where Q is a homogeneous polynomial of degree 2n in the three variables kx, ky, x and is given by:
Qðkx; ky;xÞ ¼ Ax2n�1kxq2n�2 þ Cx2n�1kyq2n�2=2�x2np2n: ð34Þ
Eq. (33) is the dispersion relation of the n-layer PMDL. Since the rational function P2n,2n�2 and hence p2n,q2n�2 are given by
(14) and (19), their coefficients are determined by the n parameters rxj. Thus, for real parameters ðrxj 2 RÞ, (34) represents a
polynomial with real coefficients.

It should be noted that in the previous sections, we were concerned with modes of the kind eiðkxxþkyy�xtÞ with ðky;xÞ 2 R.
However, since well-posedness is also concerned with modes growing in time, the restriction to real x is no longer sufficient.
This is suggested by the first ill-posed mode. The existence of complex x is a result of Laplace transforms used in the der-
ivation of these ill-posed modes [34,41]. Hence we have ky 2 R and ðkx;xÞ 2 C; this requires a clear definition for the square
root used in (30) and (31). To facilitate comparison with [35], we define the square root in (31); the square root in (30) can be
inferred accordingly.

Consider the case of ky = 0 first. A natural definition of the square root branch in (31) gives kx ¼ �x=
ffiffiffi
A
p

. For later use note
that kx ¼ �x=

ffiffiffi
A
p

has the following implication: Im (x) > 0) Im (kx) < 0. For ky – 0, we can define the function

kx ¼ �Cky �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ax2 � ð4AB� C2Þk2

y

q� �
=2A to be an analytic continuation of the function kx ¼ �x=

ffiffiffi
A
p

. When Im (x) – 0, this

continuation preserves the implication Im (x) > 0) Im(kx) < 0. When x 2 R, kx can be defined as the limit obtained through

Im (x) ? 0+. The limiting process involves Im (x) > 0 and hence results in Im (kx) < 0 when jxj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C2=4A

q� �
jkyj in (31).

Formally this leads to the following definition:
Definition of square root:

� For Im (x) > 0, the branch (31) refers to the analytic function kx ¼ �Cky �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ax2 � ð4AB� C2Þk2

y

q� �
=2A of ky and x

obtained by analytic continuation from the values kx ¼ �x=
ffiffiffi
A
p

for ky = 0 with Im (kx) < 0.
� For x 2 R; kx in branch (31) is defined by limits in the half-plane Im (x) > 0, and satisfies:

� Im(kx) < 0 if jxj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C2=4A

q� �
jkyj,

� kx 2 �Cky � 2
ffiffiffi
A
p

x½0;1�
� 	

=2A if jxjP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C2=4A

q� �
jkyj.
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Similarly, for Im(x) P 0, branch (30) results in Im(kx) > 0 or kx 2 ð�Cky þ 2
ffiffiffi
A
p

x½0;1�Þ=2A. The same logic can also be followed
to define (30) and (31) for Im(x) < 0.

With this definition of the square root, we can immediately see that all the three ill-posed modes belong to branch (31).
This is obvious for the first and third ill-posed modes because only branch (31) results in Im(kx) < 0. The second ill-posed
mode contains propagating wave modes that have non-positive group velocity. Propagating wave modes i.e. those with
ðkx; ky;xÞ 2 R have group velocity given by cgx 2

ffiffiffi
A
p
½�1;1�. This can be seen by substituting (30) and (31) into the group

velocity expression (31). Since branch (31) allows propagating wave modes with kx 2 �Cky � 2
ffiffiffi
A
p

x½0;1�
� 	

=2A, we can

see that it allows modes with cgx 2
ffiffiffi
A
p
½�1;0� 6 0. Since this includes all non-positive group velocities, the second ill-posed

mode also belongs to branch (31). Moreover, the branch (31) does not admit any well-posed modes. All modes admitted by
(31) with Im(x) P 0 are ill-posed as shown above. For Im(x) < 0, (31) results in Im(kx) > 0; these modes are not L2 integrable
in the domain (x 6 0) and hence physically inadmissible in the first place. Thus the IBVP is well-posed if and only if the
approximation does not contain the branch (31), i.e.

Well-posedness criterion: The model problem of Fig. 1 is well posed if and only if (34) and (29) have no mutual solutions
(kx, ky, x) – (0, 0, 0) with ky 2 R; ImðxÞ > 0, and kx belonging to the branch (31).

This criterion can be rewritten solely in terms of vertical slowness ry and the rational approximation provided by the n-

layer PMDL. For this we can assume x – 0; for if it is, Eq. (29) gives kx ¼ �C � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AB� C2

p� 	
ky=2A and this with (33) implies

kx = ky = 0 which is of no interest. For ky 2 R and Im (x) > 0, the variable ry = ky/x lies in the set C n ðð�1;0Þ [ ð0;1ÞÞ. Includ-
ing limits Im (x) ? 0, x9 0 amounts to letting ry range all over C with points on the two sides of the cuts (�1, 0), (0,1)
viewed as distinct. Hence the well-posedness criteria reduces to (34) and (31) having no mutual solutions for ry 2 C. Since
(34) is but a form of (32), the well-posedness criterion further reduces to:
�Cry �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

–
�Cry=2þ P2n;2n�2

A
; ðry 2 CÞ : well-posedness criterion: ð35Þ
Eq. (35) is the criterion for a n-layer PMDL to act as a well-posed ABC for the model problem in Fig. 1 with a tilted anisotropic
interior. The above arguments from (33) till (35), except for some explanations and extensions to the case of tilted anisot-
ropy, are straightforward extensions of the arguments presented in [35] for isotropic acoustics.

4.3. Reformulation of the well-posedness criterion

As noted before, necessary and sufficient conditions for well-posedness of general rational ABCs have been derived by
Trefethen and Halpern [35] for isotropic acoustics (A = B = 1, C = 0 in (1)). These results are applicable to scalar, untilted aniso-
tropic media without any modification. In this sub-section, we show that the form of the n-layer PMDL (21) is such that it
will allow us to extend Trefethen and Halpern’s isotropic acoustics results to tilted anisotropy. To this end, we reformulate
(35) in terms of interpolation points before deriving necessary and sufficient conditions for well-posedness of PMDL.

Since A – 0, (35) is equivalent to:
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2

– P2n;2n�2; for ry 2 C: ð36Þ
Using A > 0, 4AB � C2 > 0 from (5), we can divide (36) by
ffiffiffi
A
p

to get �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðB� C2=4AÞr2

y

q
– P2n;2n�2=

ffiffiffi
A
p

, which, with the
following,
~ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB� C2=4AÞ

q� �
ry;

~P2n;2n�2 ¼ P2n;2n�2=
ffiffiffi
A
p

;

ð37Þ
results in the form:
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~r2

y

q
– eP2n;2n�2ð~ryÞ; for ~ry 2 C: ð38Þ
eP2n;2n�2ð~ryÞ, like P2n,2n�2(ry), is a rational function with real coefficients.
Eq. (38) can further be simplified by noting that, on (�1, �1) and (1, 1), the inequality is always true because the left-

hand side is imaginary, finite and non-zero while the right-hand side is real or infinite. Hence the well-posedness criterion
reduces to,
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~r2

y

q
– eP2n;2n�2ð~ryÞ; for ~ry 2 C� ð�1;�1Þ � ð1;1Þ: ð39Þ
It should be remembered that (38) is still the well-posedness criterion for tilted anisotropic media. Since the rational function
P2n,2n�2(ry) and hence eP2n;2n�2 ~ry


 �
are defined by (19) and (14), the well-posedness criterion reduces to finding the param-

eters rxj of (14), so that (39) is satisfied. The form of (38) and (39) is the form that occurs in the well-posedness study of
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isotropic acoustics and as such, those results are directly applicable to our problem. It should be noted that we were able to
arrive at the form of (38) and (39) only because of the special form of (32) wherein the stiffness of the exact right half-space is
approximated by a rational function (19) to get Kn � Kexact.

We now use the results derived for isotropic acoustics and reformulate (39) in terms of interpolation points. One of these
results concerns a real rational function Pr,s of exact type (r, s) with Pr,s(0) – 0,1. It has been shown in [35] (Lemma 2) that
the following conditions are equivalent:

(a) Pr;sðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

has no solutions in C� ð�1;�1Þ � ð1;1Þ.
(b) s 6 r 6 s + 2 and Pr;sðrÞ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

has r + s + 1 + vrs solutions in C� ð�1;�1� � ½1;1Þ, counted with multiplicity.
Here vrs = 0 if r + s is odd and vrs = 1 if r + s is even.

In our case P2n,2n�2(ry) and hence eP2n;2n�2ð~ryÞ are real rational functions of exact type (2n, 2n � 2) for rxj 2 R. If we

can show that eP2n;2n�2ð0Þ– 0;1, then (39) is precisely the statement (a) above and can hence be replaced by the equiva-

lent statement (b). The rational function eP2n;2n�2ð~ryÞ already satisfies the condition s 6 r 6 s + 2, and hence (39) becomes:

For rxj 2 R; þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~r2

y

q
¼ eP2n;2n�2ð~ryÞ has 4n solutions in C� ð�1;�1� � ½1;1Þ counted with multiplicity. We can now

undo the change instigated in (37) to write the above well-posedness criterion as: For rxj 2 R;

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
=2 ¼ P2n;2n�2ðryÞ has 4n solutions in C� ð�1;�d� � ½d;1Þ counted with multiplicity. Here

d ¼ 2
ffiffiffi
A
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AB� C2

p
. An equivalent statement in terms of interpolation points is:

A n-layer PMDL is well-posed if and only if (�Cry /2 + P2n,2n�2)/A interpolates �Cry þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q� 	
=2A at 4n

points in C� ð�1;�d� � ½d;1Þ counted with multiplicity.

The above well-posedness criterion requires eP2n;2n�2ð0Þ – 0;1. Using (5) and (37) an equivalent requirement is
P2n,2n�2(0) – 0,1. Instead of proving P2n,2n�2(0) – 0,1 right now, we assume it to be true and derive conditions under which
the last stated well-posedness criterion is satisfied. We then show that these conditions ensure P2n,2n�2 (0) – 0,1.

It has already been stated in Section 2.5 that the n-layer PMDL exactly interpolates 4n points (counted with multiplicity)
on the slowness curve [40]. Comparing this with the last stated well-posedness criterion, we can see that the only thing that

remains to be done, is to find conditions under which all these 4n points are on �Cry þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q� 	
=2A in the

required domain C� ð�1;�d� � ½d;1Þ and not on �Cry �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q� 	
=2A. This is done in the following sub-

section.

4.4. Necessary and sufficient conditions

For clarity, we rewrite the positive and negative branches of the horizontal slowness,
rx ¼
�Cry þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

; ð40Þ

rx ¼
�Cry �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A� ð4AB� C2Þr2

y

q
2A

; ð41Þ
and restate the well-posedness criterion obtained at the end of the previous sub-section.
Well-posedness criterion: The model problem of Fig. 1 with a scalar anisotropic medium and with a n-layer PMDL is well-

posed if and only if (�Cry/2 + P2n,2n�2)/A interpolates (40) at 4n points in C� ð�1;�d� � ½d;1Þ counted with multiplicity

where d ¼ 2
ffiffiffi
A
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AB� C2

p
.

In Section 3 we stated the sufficient criterion for accuracy (28) by first imposing the condition of positive reference group
velocities cj > 0; �cj > 0 at each of the 4n interpolation points. The condition cj > 0; �cj > 0, by definition, forces interpolation
of the positive group velocity branch (40) and hence we expect (28) to play some role in assuring well-posedness. In-fact, we
now show that (28) is both necessary and sufficient for satisfying the above well-posedness criterion.

Motivated by the derivation of the sufficient condition for accuracy, we first consider a choice of parameters:
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að4AB� C2Þ

q
�������

������� < rxj 6
2
ffiffiffi
B
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4AB� C2
p ð42Þ
Using (26) and after some manipulations, the choice of (42) results in:
ryj 2 ð�d;dÞ; �ryj 2 ð�d; dÞ where d ¼ 2
ffiffiffi
A
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AB� C2

p
: ð43Þ
It can be seen from (25) that (42) ensures cj > 0; �cj > 0 and so we have 4n points of interpolation of the positive group veloc-
ity branch (40) (or equivalently (30)). Hence (42) is sufficient for well-posedness.
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We next consider,
rxj >
2
ffiffiffi
B
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4AB� C2
p : ð44Þ
From Section 2.5, we have the usual four points of interpolation (including both positive and negative group velocity
branches) ry ¼ �ryj; ��ryj. Based on (26), none of these interpolation points are real and thus they belong to C� R. We fur-
ther show that none of these points can interpolate the non-positive group velocity branch (41) thus asserting that all four
points interpolate the positive group velocity branch (40) with ry 2 C� R.

The (ry, rx) pairs of the four interpolation points were stated in Section 2.5 to be ðryj;rxjÞ; ð�ryj;rxj þ ðC=AÞryjÞ; ð�ryj;rxjÞ
and ð��ryj;rxj þ ðC=AÞ�ryjÞ. We will consider each of these separately.

Consider the point of interpolation (ryj, rxj): From (44) and (26) we have Im (ryj) – 0. At the point of interpolation,
ky = xryj, kx = xrxj and since ky 2 R, we have Im (x) – 0. If Im (x) > 0, we get Im (kx) > 0 (because (44) implies rxj > 0). Hence
kx cannot lie on (41) because for ky 2 R the negative branch of the square root has Im (kx) < 0 (from the definition of square
root). The same argument holds for the interpolation point ð�ryj;rxjÞ with ky ¼ x�ryj.

Consider the point of interpolation (�ryj,rxj + (C/A)ryj): From (44) and (26), we have Im (ryj) – 0. At the point of inter-
polation, ky = x (�ryj),kx = x(rxj + (C/A)ryj) = xrxj � (C/A)ky and since ky 2 R, we have Im (x) – 0. If Im (x) > 0, we get Im
(kx) > 0 (because (44) implies rxj > 0). The rest is identical to the above argument for (ryj,rxj) and the same holds for
ð��ryj;rxj þ ðC=AÞ�ryjÞ.

The above arguments show that, for Im (x) > 0, (44) ensures that the four points of interpolation lie in C� R and inter-
polate (40). To summarize: The condition (42), and for Im (x) > 0 the condition (44), ensure 4n points of interpolation of the
positive branch (40) in (�d,d) and C� R, respectively. Combining (42) and (44) we see that for,
rxj >
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Að4AB� C2Þ
q
�������

�������; ð45Þ
(�Cry/2 + P2n,2n�2)/A interpolates (40) at 4n points in C� ð�1;�d� � ½d;1Þ counted with multiplicity (again for Im(x) > 0
where applicable) and we thus have a sufficient condition for well-posedness.

To show that (45) is also necessary, the above arguments (from (42) onwards) can easily be reversed to show that

rxj 6 jC=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að4AB� C2Þ

q
j ensures at least one interpolation of the wrong branch (41) in C� ð�1;�d� � ½d;1Þ. For example,

for �2
ffiffiffi
B
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AB� C2

p
6 rxj 6 jC=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að4AB� C2Þ

q
j, we get at least one of the reference group velocities to be non-positive

i.e. cj 6 0 and/or �cj 6 0 from (25). This implies at least one corresponding point of interpolation of the wrong branch. For

rxj < �2
ffiffiffi
B
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AB� C2

p
, we can reverse the arguments immediately following (44) using the fact that rxj < 0.

The above arguments show that (45) is both a necessary and a sufficient condition for satisfying the well-posedness crite-
rion presented at the beginning of this sub-section.

We assumed P2n,2n�2(ry) – 0,1 for ry = 0, in deriving the well-posedness criterion (45) (see the ending of the last sub-
section); this assumption can now be verified as follows. At ry ¼ 0; cgx ¼

ffiffiffi
A
p

from (6) and (7). Since (45) is the same as
the sufficient condition for accuracy (28), based on the definition of accuracy in (27) and given that cgx ¼

ffiffiffi
A
p

> 0, we have
jRnj < 1. Since jRnj < 1, based on (23), P2n,2n�2 (ry) – 0,1 for ry = 0.

Hence, (45) is a necessary and sufficient condition for well-posedness of a n-layer PMDL with parameters
rxj 2 R ðj ¼ 1; . . . ; nÞ. Since this is the same as (28), well-posedness guarantees accuracy. The geometric representation of
(45) is shown in Fig. 4.

It was shown in [40] that (28) is a sufficient condition for accuracy. It might be possible to show that it is also necessary
for accuracy in some sense. We do not bother to do this because any change in (28) will only lead to ill-posedness as (28) is
already a necessary condition for well-posedness.

4.5. Relation between tilted and untilted anisotropy

We were able to arrive at the well-posedness condition (45) for tilted anisotropic media by using the results already avail-
able for isotropic acoustics. We have already noted in Section 3 and in [40], that the distinguishing characteristic of PMDL is
that it approximates stiffness instead of the horizontal wave number. This characteristic is precisely the one that allows us to
borrow the results from isotropic acoustics and apply them to tilted anisotropy. The two properties that distinguish tilted
anisotropy from isotropy are obviously the anisotropy (A – B) and the tilt (C – 0) as shown in Fig. 2. Untilted anisotropy
can be easily converted to isotropy by a simple scaling of variable as in (37). Hence, if we wish to somehow connect tilted
anisotropy to isotropy, the difficulty mainly lies in converting tilted anisotropy to untilted anisotropy.

The exact horizontal slowness (9) represents a tilted ellipse in (ry, rx) space for A – B and C – 0. However, the exact stiff-
ness given by (11) represents an untilted ellipse in (ry, iK/x) space. Since the current PMDL approximates stiffness (or iK/x to
be more precise) by a rational function P2n,2n�2 (20), we are in essence approximating an untilted ellipse by a rational function
even though we are dealing with tilted anisotropic media. But approximating untilted ellipses by rational functions is pre-
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cisely what occurs in rational approximations of untilted anisotropy [35]. Hence, approximating stiffness in general, and the
form of our PMDL (19) in particular, provides a natural connection between tilted and untilted anisotropy. This explains our
ability to use the well-posedness results of isotropic acoustics.

Well-posedness (or stability) of PML for convective acoustics with uniform parallel and oblique mean flow (dispersion
relation of shifted and/or tilted ellipse) has been possible due to linear variable transformations (see [23–30,32]). Among
other things, such variable transformations result in removing the tilt; or, in other words, they convert the dispersion rela-
tion from a tilted ellipse to an untilted ellipse. Though we approach the well-posedness of PMDL from the viewpoint of ra-
tional ABCs, the ideas of variable transformations used for PML [23–30,32] and other rational ABCs [33] are similar to the one
discussed previously of converting a tilted ellipse in (ry, rx) space to an untilted ellipse in (ry, iK/x) space. However, the ref-
erence to untilted cases is made in this work purely to gain a better understanding of the inner workings of PMDL and for
comparison purposes only. Note that the PMDL formulation (of approximating stiffness instead of wavenumbers) is such that
no explicit coordinate transformation is required. This, we hope, will facilitate a relatively straightforward extension to the
well-posedness studies of models involving corners and heterogeneous (layered) media; work on this is currently ongoing.

We also mention that the proof of well-posedness presented here does not contradict the result of [26] which, in essence,
states that a necessary condition for stability of PML with complex coordinate stretching in the direction of unboundedness
(x) is cgxcpx P 0. The result in [26] is derived for a full-space PML medium with constant complex coordinate stretching; it
considers the continuous, un-truncated PML. The n-layer PMDL considered here has purely imaginary layer lengths; it is dis-
crete and truncated to begin with. Moreover, the PMDL formulation is such that there is no discretization error (only trun-
cation error). Hence, it seems that even in the limit of fine discretization, the n-layer PMDL tends to the truncated continuous
PML and not the full-space PML (both PML and PMDL considered with similar stretching i.e. both with complex or purely
imaginary stretching). While it may seem counterintuitive, ongoing work suggests that it is this truncation that contributes
to the well-posedness of PMDL. A detailed analysis is outside the scope of this paper.
5. Numerical stability

It is known that well-posedness by itself does not guarantee numerical stability. Typically well-posedness is associated
with boundedness of continuous models while stability deals with their discretized counterparts. It is important to recognize
that well-posedness by itself may not exclude exponential growth, but stability requirements impose no growth, or at most
polynomial growth [26]. Moreover, numerical stability deals with issues arising out of numerical implementation and finite
precision arithmetic. PMDL as presented till now is continuous in time but discrete in space to begin with. Hence numerical
stability here refers to time discretization and finite precision arithmetic.

We are interested in asymptotic stability i.e. boundedness of the solution as t ?1. It is well-known from eigenvalue
analysis that if k denotes an eigenvalue of a matrix M, a first order system of the form @u/@t = Mu is asymptotically stable
if and only if, (a) Re(k) 6 0 and (b) Re(k) = 0) k is semi-simple. Stability proof of the time discretized equations can be sim-
plified using the results of continuous time stability presented in the following sub-section.
5.1. Continuous time stability

Inverse Fourier transforming (17) through the duality @/@t M �ix, and defining v ¼ @u=@t; w ¼
R

udt, we get,
F ¼ Cvþ Kuþ Rw: ð46Þ
The matrix C can easily be seen to be invertible from (16). For F = 0, (46) can be reformulated as,
@

@t
u
w

� 
¼ �C�1K �C�1R

I 0

" #
u
w

� 
: ð47Þ
Eq. (47) is of the form @u/@t = Mu, and if k are the eigenvalues, then,
0 ¼ jM� kIj ¼ �C�1K� kI �C�1R
I �kI

�����
����� ¼ jk2Iþ kC�1Kþ C�1Rj ¼ jC�1jjk2Cþ kKþ Rj; ð48Þ
where the third equality follows from the standard block determinant of matrices simplified by the presence of the identity
matrices in the lower two blocks with the assumption of k – 0. Comparing (48) with (17), and noting that jC�1j– 0, we get
k = �ixR, where xR are the resonant frequencies (i.e. xR satisfy j � ixRC + K + (i/xR)Rj = 0). Note that the assumption k – 0 is
now validated because xR – 0.

In the previous section we proved that (45) ensured well-posedness. Trefethen and Halpern [35] have proved that a nec-
essary condition for well-posedness is that the zeroes of eP2n;2n�2ð~ryÞ=~ry (defined in (37)) are real and simple (Theorem 2 in
[35]). Using (37), (19) and (22), the theorem regarding the zeroes of eP2n;2n�2ð~ryÞ=~ry translates to the resonant frequencies xR

being real and simple. This ensures asymptotic stability.
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5.2. Discretized time stability

A Crank–Nicolson discretization of (47) gives,
Fig. 6.
satisfy

Fig. 5.
PMDL i
1
Dt

utþDt � ut

wtþDt �wt

� 
¼ 1

2
�C�1K �C�1R

I 0

" #
utþDt þ ut

wtþDt þwt

� 
ð49Þ
From the previous subsection we know that the eigenvalues k = �ixR of M are simple. Hence M is diagonalizable and we
have MV = VD where D = diag{k1, . . .,k2n}. Using this (49) can be manipulated as follows:
1
Dt

VV�1 utþDt � ut

wtþDt �wt

� 
¼ 1

2
�C�1K �C�1R

I 0

" #
VV�1 utþDt þ ut

wtþDt þwt

� 
1
Dt

V�1 utþDt � ut

wtþDt �wt

� 
¼ 1

2
DV�1 utþDt þ ut

wtþDt þwt

� 
� 1

2
Dþ 1

Dt
I

� �
V�1 ut

wt

� 
¼ 1

2
D� 1

Dt
I

� �
V�1 utþDt

wtþDt

�  ð50Þ
Since D is diagonal, the last system in (50) is a set of decoupled equations of the general form,
/tþDt ¼
1=Dt þ k=2
1=Dt � k=2

� �
/t ¼

2þ kDt
2� kDt

� �
/t ð51Þ
with / denoting any component of the vector V�1{u w}T and k the corresponding eigenvalue. Since k = �ixR, we have
j/t+Dtj = j/tj. This implies asymptotic stability of the time discretized form (49). Note that (46) models only the exterior
and hence the numerical stability assured by (51) does not consider the effect of the interior on the stability of the coupled
(interior + exterior) model. As mentioned before, we do not consider issues related to interior discretization in this work. We
mention however, that in the presence of an interior, time discretization is performed using the implicit extended constant
average acceleration (instead of Crank–Nicolson) and details of its implementation can be found in [38,45,49].

5.3. Finite precision issues

While (51) ensures asymptotic stability, it still neglects issues related to finite precision arithmetic. While the theorem of
Trefethen and Halpern (Theorem 2 in [35]) ensures that the resonant frequencies are simple (and hence distinct), they can be
arbitrarily close to each other, especially for large number of layers. If round off errors due to finite precision make these
frequencies indistinguishable, there will be polynomial growth associated with repeated eigenvalues. In the case of multiple
Interior solution for a 2 layer PMDL exterior with various PMDL parameters. Only the last three simulations have parameters above the cusp and thus
the well-posedness and accuracy criterion.

Reference solution in a large (500 � 500) domain at various times. For numerical experiments, the interior chosen is denoted by the square and
s applied at the edges of this square.
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absorbing boundaries, this can also manifest as exponential growth [48]. The variable in (51) is also not the original field
variable {u w}T, but V�1{u w}T. In the presence of V�1, the magnitude of the field variables will depend on the condition num-
ber of V which may be large. Moreover, k = �ixR only ensures Re(k) = 0 and not the stronger form Re(k) < 0. Numerical per-
turbations due to finite precision arithmetic may result in Re(k) > 0 and this implies growth in time. Finite precision issues
are beyond the scope of this work.
6. Numerical examples

We consider a 2D model problem with a square interior consisting of a scalar tilted anisotropic medium that is modeled
by a mesh of 200 � 200 regular square bilinear finite elements of size h = 2 � 10�4. The exterior is represented by ABCs on all
four edges/corners. Using the material parameters a = 1, b = 2, b = 30� in (3), the well-posedness and accuracy condition for
PMDL in the x direction is rxj > 0.72 (45). For PMDL in the y direction we have a = 1, b = 2, b = 60� and hence (45) results in
ryj > 0.98. For simplicity, we assume ryj = 1.5rxj and rx1 = rx2 =. . . = rxn, thus reducing the number the PMDL parameters to
just one. The excitation is assumed to be sin2(px/5h) � sin2(py/5h) � sin2(pt/10Dt) for jxj 6 5h, jyj 6 5h and t 6 10Dt where
Dt = 2 � 10�4 is the time step size. The excitation is taken to occur at the origin of the coordinate system with the four cor-
ners of the interior domain being positioned at (�0.01, 0.01), (0.03, 0.01), (0.03, �0.03) and (�0.01, �0.03). This ensures that
the excitation is at the center of the upper left quarter of the interior i.e. it is placed closer to some interior boundaries and
corners than others. For comparison, the reference solution is obtained using a 500 � 500 interior with the same element and
Fig. 7. Relative error in norm for a 2 layer PMDL with various parameters at different times. The lines demarcating the cusp of the slowness ellipse and its
peak are shown.

Fig. 8. Slowness diagrams for 2 layer PMDL approximation with parameters chosen below the cusp, between the cusp and peak and above the peak. The
first figure has interpolation points with negative group velocity while the second one has interpolation points with positive group velocity. The last two do
not have any interpolation points on the ellipse though they do approximate only the positive group velocity branch.
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time step size as before. The relative error in norm is calculated as kuPMDL � ureferencek2/kureferencek2 and expressed as a per-
centage. The interior chosen and the reference solution at various times is shown in Fig. 5.

The accuracy obtained for different values of the PMDL parameters rxj for a 2 layer PMDL can be visually inferred from
Fig. 6 and is numerically quantified in Fig. 7. The inaccuracies of violating (45) are obvious in Figs. 6 and 7 shows that the
least accurate results are obtained when rxj is below the cusp i.e. when the parameters violate the accuracy and well-posed-
ness criterion (45). In the present case (45) implies rxj > 0.72 and since we use ryj = 1.5rxj, (45) is also violated in the y direc-
tion when rxj = 0.2, 0.4, 0.6. The relative error is also seen to increase when the parameters are chosen above the peak of the
ellipse. This is because of the fact that for such parameters there will be no interpolation points on the ellipse (see [40]) and
Fig. 9. Relative error in norm for a 6 layer PMDL with various parameters. The lines demarcating the cusp of the slowness ellipse and its peak are shown.

Fig. 10. Long time behavior of the interior solution with a 6 layer PMDL approximating the exterior with various parameters.
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since we wish to capture a part of the ellipse (the positive group velocity part) we should expect some loss in accuracy in this
case. The slowness diagram from [40] is presented again in Fig. 8 to clarify this point.

Increasing the number of PMDL layers will improve the accuracy only if the parameters satisfy (45). This is clearly dem-
onstrated in Fig. 9. By comparing Figs. 7 and 9, we see that for parameters chosen below the cusp, there is an improvement in
accuracy only at earlier times. With increasing time, and hence with increasing number of reflections from the PMDL bound-
aries, the solution deteriorates. The gain in accuracy when parameters satisfying (45) are chosen is also evident from these
two figures.

The importance of (45) on the well-posedness and stability of the problem at hand is demonstrated by examining the long
time behavior of the numerical solution. Fig. 10 shows that except for the case of rxj = 0.8, instability occurs only when the
parameters violate (45) i.e. when rxj 6 0.72 and the solution is stable when (45) is satisfied.

The case of rxj = 0.8 becoming unstable even while satisfying (45) can be explained by observing the interior solution
shown in Fig. 11. It was noted that when parameters are chosen above the cusp and very near to it, such instability occurs
when the number of PMDL layers is large. For example it does not occur with a 2 layer PMDL. For a 6 layer PMDL, Fig. 11
shows ripples along the boundary that are characteristic of this kind of instability. These ripples decay exponentially in a
direction perpendicular to the boundary and propagate along the boundary with their amplitudes increasing with time. This
suggests that they are due to a combination of the reflection of evanescent waves not handled by the PMDL used in this
experiment and the highly oscillatory behavior of the PMDL approximation near the zero group velocity regions of the slow-
ness diagram (see [40]). Such an instability can be handled as in [40] by either not using parameters very near the cusp or by
using padding layers between the interior and PMDL. The effect of using parameters relatively far from the cusp is evident in
Fig. 11. Interior solution for the case where the PMDL parameter is above the cusp but still close to it.

Fig. 12. Long time behavior of the interior solution with a 6 layer PMDL approximating the exterior with parameters chosen near the cusp. The rogue
behavior seen with rxj = 0.8 in Fig. 10 is no longer present. Six padding layers with ad hoc parameters were used.



Fig. 13. Comparison of accuracy achieved with and without padding layers. The gain in accuracy can be attributed to the handling of the evanescent
spectrum and the smoothening of the PMDL approximation near zero group velocity modes.
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Fig. 10. Padding layers are a form of PMDL that can handle evanescent waves and consist of mid-point integrated linear finite
elements with real lengths [44,45]; without delving into the behavior and design of padding layers, we present the effect of
PMDL with padding in Figs. 12 and 13. When compared to Fig. 10, Fig. 12 clearly shows the stabilization of the rxj = 0.8 case.
While the experiments with the correct parameters lead to stable solutions, their accuracy can be seen to reduce with time
both in Fig. 10 and in Fig. 12. This loss in long term accuracy is consistent with the observation in [10] and can be attributed
to the fact that we have either completely neglected the evanescent spectrum or only handled it in an ad hoc manner. We
reemphasize that PMDL can handle evanescent modes effectively [44,45]; our restriction to propagating modes is intended
only to make the well-posedness problem tractable. Unlike in the case of [45], the behavior of padding layers in the case of
tilted anisotropic acoustics is not completely understood yet and the padding layers may only be delaying the onset of insta-
bility (instead of completely eliminating it). Their use here to handle instabilities is based on promising but preliminary
studies.
7. Summary and conclusions

A necessary and sufficient condition for well-posedness of PMDL is presented for the scalar anisotropic wave equation.
This condition also turns out to be sufficient for accuracy. The algebraic criterion derived here provides a simple bound
for PMDL layer lengths and ensures well-posedness in Kreiss’s sense. This bound depends on the anisotropy of the medium,
in particular the tilt, and guarantees strong well-posedness of any PMDL satisfying the bound.

The final form of the well-posed PMDL derived here is similar to the well-posed PML [23–30,32] and rational ABC [33]
obtained through coordinate rotations, but has two important differences: (a) Well-posedness analyses of PML typically con-
sider full-space IVPs, while we consider the IBVPs obtained from coupling the interior with truncated PMDL. (b) Existing
analyses consider continuous PMLs, while we consider PMDL, which is already a discretized version of PML, with the impor-
tant property of perfect matching even after discretization. Thus, the problem considered in this paper is closer to the com-
putational problem which involves both discretization and truncation (although we do not consider the issue of interior
discretization).

To make the well-posedness problem tractable, the PMDL formulation is not considered in all its generality. The present
study is confined to propagating wave modes, single straight computational boundary and homogeneous though anisotropic
exteriors. None of the these restrictions, however, are due to actual limitations of PMDL and the PMDL formulation shows
promise of being extendible to more complex media. For instance, in deriving the well-posedness criterion, the PMDL for-
mulation is shown to naturally overcome challenges posed by the existence of wave modes with differing phase and group
velocity signs without the need of an explicit coordinate transformation. This is unlike the techniques used to handle opposing
phase and group velocity signs for the design of both PMLs [23–30,32] and rational ABCs [33]. Since techniques involving
coordinate rotations cannot be directly extended to heterogeneous (layered) media, the PMDL ABC holds greater promise
for such media. Moreover, the distinctive property of PMDL, namely approximation of half-space stiffness instead of the
wavenumber, is central to the ability of PMDL to capture the correct group velocities even when the group and phase veloc-
ities are not aligned in the same direction. This is because the group velocity and stiffness are related (at least in this case)
and PMDL approximates the stiffness. We hypothesize that the link between group velocity and stiffness extends to general
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vector systems and that this link can be used to ensure well-posedness of PMDL even in more complicated media (like elas-
todynamics) that are governed by vector equations. Further investigation in this direction is underway.
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